
APRIORI Algorithm

Professor Anita Wasilewska
Lecture Notes

The Apriori Algorithm: Basics
The Apriori Algorithm is an influential algorithm for
mining frequent itemsets for boolean association rules.

Key Concepts :
• Frequent Itemsets: The sets of item which has minimum

support (denoted by Li for ith-Itemset).
• Apriori Property: Any subset of frequent itemset must be

frequent.
• Join Operation: To find Lk , a set of candidate k-itemsets

is generated by joining Lk-1 with itself.

The Apriori Algorithm in a
Nutshell

• Find the frequent itemsets: the sets of items that have
minimum support

– A subset of a frequent itemset must also be a
frequent itemset

• i.e., if {AB} is a frequent itemset, both {A} and {B}
should be a frequent itemset

– Iteratively find frequent itemsets with cardinality
from 1 to k (k-itemset)

• Use the frequent itemsets to generate association rules.

The Apriori Algorithm : Pseudo
code

• Join Step: Ck is generated by joining Lk-1with itself
• Prune Step: Any (k-1)-itemset that is not frequent cannot be a

subset of a frequent k-itemset
• Pseudo-code:

Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=∅; k++) do begin

Ck+1 = candidates generated from Lk;for each transaction t in database do
increment the count of all candidates in Ck+1

that are contained in t
Lk+1 = candidates in Ck+1 with min_support
end

return ∪k Lk;

The Apriori Algorithm: Example

• Consider a database, D ,
consisting of 9 transactions.

• Suppose min. support count
required is 2 (i.e. min_sup = 2/9 =
22 %)

• Let minimum confidence required
is 70%.

• We have to first find out the
frequent itemset using Apriori
algorithm.

• Then, Association rules will be
generated using min. support &
min. confidence.

TID List of Items
T100 I1, I2, I5

T100 I2, I4

T100 I2, I3

T100 I1, I2, I4

T100 I1, I3

T100 I2, I3

T100 I1, I3

T100 I1, I2 ,I3, I5

T100 I1, I2, I3

Step 1: Generating 1-itemset Frequent Pattern

Itemset Sup.Count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Itemset Sup.Count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

• The set of frequent 1-itemsets, L1 , consists of the candidate 1-
itemsets satisfying minimum support.

• In the first iteration of the algorithm, each item is a member of the set
of candidate.

Scan D for
count of each
candidate

Compare candidate
support count with
minimum support
count

C1 L1

Step 2: Generating 2-itemset Frequent Pattern

Itemset

{I1, I2}
{I1, I3}
{I1, I4}
{I1, I5}
{I2, I3}
{I2, I4}
{I2, I5}
{I3, I4}
{I3, I5}
{I4, I5}

Itemset Sup.
Count

{I1, I2} 4

{I1, I3} 4

{I1, I4} 1

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

{I3, I4} 0

{I3, I5} 1

{I4, I5} 0

Itemset Sup
Count

{I1, I2} 4
{I1, I3} 4
{I1, I5} 2
{I2, I3} 4
{I2, I4} 2
{I2, I5} 2

Generate
C2
candidates
from L1

C2

C2

L2

Scan D for
count of
each
candidate

Compare
candidate
support
count with
minimum
support
count

Step 2: Generating 2-itemset Frequent Pattern

• To discover the set of frequent 2-itemsets, L2 , the
algorithm uses L1 Join L1 to generate a candidate set of
2-itemsets, C2.

• Next, the transactions in D are scanned and the support
count for each candidate itemset in C2 is accumulated
(as shown in the middle table).

• The set of frequent 2-itemsets, L2 , is then determined,
consisting of those candidate 2-itemsets in C2 having
minimum support.

• Note: We haven’t used Apriori Property yet.

Step 3: Generating 3-itemset Frequent Pattern

Itemset

{I1, I2, I3}
{I1, I2, I5}

Itemset Sup.
Count

{I1, I2, I3} 2

{I1, I2, I5} 2

Itemset Sup
Count

{I1, I2, I3} 2
{I1, I2, I5} 2

C3 C3
L3

Scan D for
count of
each
candidate

Compare
candidate
support
count with
min support
count

Scan D for
count of
each
candidate

• The generation of the set of candidate 3-itemsets, C3 , involves use of
the Apriori Property.

• In order to find C3, we compute L2 Join L2.

• C3 = L2 Join L2 = {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4}, {I2, I3,
I5}, {I2, I4, I5}}.

• Now, Join step is complete and Prune step will be used to reduce the
size of C3. Prune step helps to avoid heavy computation due to large Ck.

Step 3: Generating 3-itemset Frequent Pattern

• Based on the Apriori property that all subsets of a frequent itemset must
also be frequent, we can determine that four latter candidates cannot
possibly be frequent. How ?

• For example , lets take {I1, I2, I3}. The 2-item subsets of it are {I1, I2}, {I1,
I3} & {I2, I3}. Since all 2-item subsets of {I1, I2, I3} are members of L2, We
will keep {I1, I2, I3} in C3.

• Lets take another example of {I2, I3, I5} which shows how the pruning is
performed. The 2-item subsets are {I2, I3}, {I2, I5} & {I3,I5}.

• BUT, {I3, I5} is not a member of L2 and hence it is not frequent violating
Apriori Property. Thus We will have to remove {I2, I3, I5} from C3.

• Therefore, C3 = {{I1, I2, I3}, {I1, I2, I5}} after checking for all members of
result of Join operation for Pruning.

• Now, the transactions in D are scanned in order to determine L3, consisting
of those candidates 3-itemsets in C3 having minimum support.

Step 4: Generating 4-itemset Frequent Pattern

• The algorithm uses L3 Join L3 to generate a candidate
set of 4-itemsets, C4. Although the join results in {{I1, I2,
I3, I5}}, this itemset is pruned since its subset {{I2, I3, I5}}
is not frequent.

• Thus, C4 = φ , and algorithm terminates, having found
all of the frequent items. This completes our Apriori
Algorithm.

• What’s Next ?
These frequent itemsets will be used to generate strong
association rules (where strong association rules satisfy
both minimum support & minimum confidence).

Step 5: Generating Association Rules from Frequent
Itemsets

• Procedure:
• For each frequent itemset “l”, generate all nonempty subsets

of l.
• For every nonempty subset s of l, output the rule “s (l-s)” if

support_count(l) / support_count(s) >= min_conf where
min_conf is minimum confidence threshold.

• Back To Example:
We had L = {{I1}, {I2}, {I3}, {I4}, {I5}, {I1,I2}, {I1,I3}, {I1,I5}, {I2,I3},
{I2,I4}, {I2,I5}, {I1,I2,I3}, {I1,I2,I5}}.
– Lets take l = {I1,I2,I5}.
– Its all nonempty subsets are {I1,I2}, {I1,I5}, {I2,I5}, {I1}, {I2}, {I5}.

Step 5: Generating Association Rules from
Frequent Itemsets

• Let minimum confidence threshold is , say 70%.
• The resulting association rules are shown below,

each listed with its confidence.
– R1: I1 ^ I2 I5

• Confidence = sc{I1,I2,I5}/sc{I1,I2} = 2/4 = 50%
• R1 is Rejected.

– R2: I1 ^ I5 I2
• Confidence = sc{I1,I2,I5}/sc{I1,I5} = 2/2 = 100%
• R2 is Selected.

– R3: I2 ^ I5 I1
• Confidence = sc{I1,I2,I5}/sc{I2,I5} = 2/2 = 100%
• R3 is Selected.

Step 5: Generating Association Rules from
Frequent Itemsets

– R4: I1 I2 ^ I5
• Confidence = sc{I1,I2,I5}/sc{I1} = 2/6 = 33%
• R4 is Rejected.

– R5: I2 I1 ^ I5
• Confidence = sc{I1,I2,I5}/{I2} = 2/7 = 29%
• R5 is Rejected.

– R6: I5 I1 ^ I2
• Confidence = sc{I1,I2,I5}/ {I5} = 2/2 = 100%
• R6 is Selected.

In this way, We have found three strong
association rules.

Methods to Improve Apriori’s Efficiency

• Hash-based itemset counting: A k-itemset whose corresponding

hashing bucket count is below the threshold cannot be frequent.

• Transaction reduction: A transaction that does not contain any

frequent k-itemset is useless in subsequent scans.

• Partitioning: Any itemset that is potentially frequent in DB must be

frequent in at least one of the partitions of DB.

• Sampling: mining on a subset of given data, lower support threshold

+ a method to determine the completeness.

• Dynamic itemset counting: add new candidate itemsets only when
all of their subsets are estimated to be frequent.

Mining Frequent Patterns Without Candidate
Generation

• Compress a large database into a compact, Frequent-
Pattern tree (FP-tree) structure
– highly condensed, but complete for frequent pattern

mining
– avoid costly database scans

• Develop an efficient, FP-tree-based frequent pattern
mining method
– A divide-and-conquer methodology: decompose

mining tasks into smaller ones
– Avoid candidate generation: sub-database test

only!

FP-Growth Method : An Example

• Consider the same previous
example of a database, D ,
consisting of 9 transactions.

• Suppose min. support count
required is 2 (i.e. min_sup =
2/9 = 22 %)

• The first scan of database is
same as Apriori, which derives
the set of 1-itemsets & their
support counts.

• The set of frequent items is
sorted in the order of
descending support count.

• The resulting set is denoted as
L = {I2:7, I1:6, I3:6, I4:2, I5:2}

TID List of Items

T100 I1, I2, I5

T100 I2, I4

T100 I2, I3

T100 I1, I2, I4

T100 I1, I3

T100 I2, I3

T100 I1, I3

T100 I1, I2 ,I3, I5

T100 I1, I2, I3

FP-Growth Method: Construction of FP-Tree

• First, create the root of the tree, labeled with “null”.
• Scan the database D a second time. (First time we scanned it to

create 1-itemset and then L).
• The items in each transaction are processed in L order (i.e. sorted

order).
• A branch is created for each transaction with items having their

support count separated by colon.
• Whenever the same node is encountered in another transaction, we

just increment the support count of the common node or Prefix.
• To facilitate tree traversal, an item header table is built so that each

item points to its occurrences in the tree via a chain of node-links.
• Now, The problem of mining frequent patterns in database is

transformed to that of mining the FP-Tree.

FP-Growth Method: Construction of FP-Tree

An FP-Tree that registers compressed, frequent pattern information

Item
Id

Sup
Count

Node-
link

I2 7
I1 6
I3 6
I4 2
I5 2

I2:7 I1:2

I1:4
I3:2 I4:1

I3:2 I4:1

null{}

I3:2

I5:1
I5:1

Mining the FP-Tree by Creating Conditional (sub)
pattern bases

Steps:
1. Start from each frequent length-1 pattern (as an initial suffix

pattern).
2. Construct its conditional pattern base which consists of the

set of prefix paths in the FP-Tree co-occurring with suffix
pattern.

3. Then, Construct its conditional FP-Tree & perform mining
on such a tree.

4. The pattern growth is achieved by concatenation of the
suffix pattern with the frequent patterns generated from a
conditional FP-Tree.

5. The union of all frequent patterns (generated by step 4)
gives the required frequent itemset.

FP-Tree Example Continued

Now, Following the above mentioned steps:
• Lets start from I5. The I5 is involved in 2 branches namely {I2 I1 I5: 1} and {I2

I1 I3 I5: 1}.
• Therefore considering I5 as suffix, its 2 corresponding prefix paths would be

{I2 I1: 1} and {I2 I1 I3: 1}, which forms its conditional pattern base.

Item Conditional pattern
base

Conditional
FP-Tree

Frequent pattern
generated

I5 {(I2 I1: 1),(I2 I1 I3: 1)} <I2:2 , I1:2> I2 I5:2, I1 I5:2, I2 I1 I5: 2

I4 {(I2 I1: 1),(I2: 1)} <I2: 2> I2 I4: 2

I3 {(I2 I1: 1),(I2: 2), (I1: 2)} <I2: 4, I1:
2>,<I1:2>

I2 I3:4, I1, I3: 2 , I2 I1 I3:
2

I2 {(I2: 4)} <I2: 4> I2 I1: 4

Mining the FP-Tree by creating conditional (sub) pattern bases

FP-Tree Example Continued

• Out of these, Only I1 & I2 is selected in the conditional FP-Tree
because I3 is not satisfying the minimum support count.
For I1 , support count in conditional pattern base = 1 + 1 = 2
For I2 , support count in conditional pattern base = 1 + 1 = 2
For I3, support count in conditional pattern base = 1
Thus support count for I3 is less than required min_sup which is 2
here.

• Now , We have conditional FP-Tree with us.
• All frequent pattern corresponding to suffix I5 are generated by

considering all possible combinations of I5 and conditional FP-Tree.
• The same procedure is applied to suffixes I4, I3 and I1.
• Note: I2 is not taken into consideration for suffix because it doesn’t

have any prefix at all.

Why Frequent Pattern Growth Fast ?

• Performance study shows

– FP-growth is an order of magnitude faster than Apriori,
and is also faster than tree-projection

• Reasoning

– No candidate generation, no candidate test

– Use compact data structure

– Eliminate repeated database scan

– Basic operation is counting and FP-tree building

	APRIORI Algorithm
	The Apriori Algorithm: Basics
	The Apriori Algorithm in a Nutshell
	The Apriori Algorithm : Pseudo code
	The Apriori Algorithm: Example
	Step 1: Generating 1-itemset Frequent Pattern
	Step 2: Generating 2-itemset Frequent Pattern
	Step 2: Generating 2-itemset Frequent Pattern
	Step 3: Generating 3-itemset Frequent Pattern
	Step 3: Generating 3-itemset Frequent Pattern
	Step 4: Generating 4-itemset Frequent Pattern
	Step 5: Generating Association Rules from Frequent Itemsets
	Step 5: Generating Association Rules from Frequent Itemsets
	Step 5: Generating Association Rules from Frequent Itemsets
	Methods to Improve Apriori’s Efficiency
	Mining Frequent Patterns Without Candidate Generation
	FP-Growth Method : An Example
	FP-Growth Method: Construction of FP-Tree
	FP-Growth Method: Construction of FP-Tree
	Mining the FP-Tree by Creating Conditional (sub) pattern bases
	FP-Tree Example Continued
	FP-Tree Example Continued
	Why Frequent Pattern Growth Fast ?

